STAT /CS 94 Fall 2015 Adhikari HWO06, Due: 10/7/15

NAME: SID:

Problem 1 Quirky Quantiles

The median of a set of numbers is the number in the middle when we sort the numbers in increasing order.
For example, the median of [-2, 0, 1, 2, 4, 5, 100] is 2, and the median of [6, 4, 3, 4, 5] is 4.
If there is an even number of numbers, there are two candidates for the “middle” number; we’ll adopt the
convention that the median is the mean of the two middle numbers in that situation. Write Python code
(without using np.median) that defines a function named median. It should take a single argument, an array
of numbers, and return a number, their median. Assume the given array isn’t empty.

Problem 2 Concatenation Confusion

Below are several snippets of Python code, and some contain common bugs. Using your best judgement (and
careful reading), determine which ones have bugs — that is, which ones don’t do what the author probably
intended. For the ones with bugs, write a fixed version of the code. The online documentation for Tables
(data8.org/datascience) and NumPy might be helpful. A backslash (\) at the end of a line indicates that
the line is continued on the next line.

(a) t = Table.read_table("some_data.csv")
sleepiest_person_age = t.sort("Hours Slept", descending=True).select["Age"]

(b) t = Table.read_table("some_data.csv")
oldest_person_name = t.sort("Age", descending=True) ["Name"] [0]

(c) t = Table.read_table("other_data.csv")
increasing_width_bins = np.arange(0, 100000, 10000) + \
np.arange (100000, 500000, 50000) + np.arange (500000, 3000000, 500000)
t.select("Salary") .hist(bins=increasing_width_bins, normed=True)

Problem 3 Dubious Dice

Students in a Data Science class are testing whether a die is fair or not. That is, they are testing whether
each face of the die appears with chance 1/6 on each roll, regardless of the results of other rolls.



STAT 94 FaLL 2015 HW 06

The die is rolled n times. Face 1 appears on a proportion p; of the rolls, Face 2 appears on proportion
po of the rolls, and so on, so that p; + p2 + p3 + ps + ps + pe = 1. The total variation distance between the
empirical distribution of the rolls and the uniform distribution on the numbers 1, 2, 3, 4, 5, and 6 is t.

The students perform a simulation, running numerous replications of n rolls of a fair die and each time
computing the total variation distance between the observed distribution and the uniform distribution on
1,2,...,6. You can assume that the number of replications is large enough that the students have a very
good approximation to the probability histogram of the total variation distance.

The proportion of replications in which the total variation distance is ¢t or more is 54%.

(a) Write a formula for ¢ in terms of p1,pa, ps, pa, p5, and pg.

(b) If you had to make a conclusion about whether the die was fair, based on the information given, what
would you conclude? Why?

(¢) The result of the test (is / is not) statistically significant. Circle one (no reasoning needed).

(d) True or false (and explain): There is about a 54% chance that the die is fair.

Problem 4 Fancy Functions

The function map is used to apply a function to each element of a list, producing a new list containing the
results. (It’s like Table’s apply method, but for lists. Note that there is a built-in function in Python 3 called
map that does something slightly different than what ours will do.) It takes two arguments: first a function
func, and second a list the_list. func is itself a function that takes a single argument and returns a value.
The ith element of the return value of map is equal to func(the_list[i]). For example, map(math.sqrt,
[1, 16, 4, 9]) has value equal to [1.0, 4.0, 2.0, 3.0]. Write Python code that defines map. We
suggest using a for loop.

Problem 5 Loopy Lookups

When you say something like my_table["some_column"], Python actually calls a function that finds the
column labeled "some_column" in the table my_table and returns it as a NumPy array. (For the curious,
the function that gets called is a method of Tables called __getitem __. Lists and arrays also have this
method, and that’s how list and array indexing works.) For this problem you’ll implement a similar function,
but we’ll call it lookup. lookup takes two arguments: first a Table the_table, and second a column name
column_name, which is a string. It returns the column named column_name in the_table, which is a NumPy
array. If there is no such column, it can do whatever you want. The only restriction is that you cannot use
the_table[column_name] (or the_table.__getitem__(column_name)). Write Python code that defines
lookup below.
Hint: Read about the column_labels and columns attributes of Tables.



