

Lecture 26, October 26

SDs and Bell Shaped Curves

Slides created by Ani Adhikari and John DeNero

Announcements

- Project 2 will be released today!
- Homework due as usual
- I've posted on Piazza about courses to consider if you are interested in data science. I have no further info yet.
 I'll post on Piazza as soon as I do.

Standard Deviation

Standard deviation (SD)

root	mean	square of	deviations from	average
5	4	3	2	1

Measures roughly how far off the values are from average

Chebychev's Bounds

Range	Proportion	
average ± 2 SDs	at least 1 - 1/4 (75%)	
average ± 3 SDs	at least 1 - 1/9 (88.888%)	
average ± 4 SDs	at least 1 - 1/16 (93.75%)	
average ± 5 SDs	at least 1 - 1/25 (96%)	

no matter what the distribution looks like

Standard units

"average ± z SDs"

- z measures "how many SDs above average"
- If *z* is negative, the value is below average
- z is called **standard units**
- Almost all standard units are in the range (-5, 5)
- To convert a value to standard units:

The SD and the histogram

- Usually not easy to estimate the SD by looking at a histogram
- But if the histogram has a special shape, then maybe

The SD and bell-shaped curves

If a histogram is bell-shaped, then

- the average is at the center
- the SD is the distance between the average and the points of inflection on either side

The standard normal curve

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, -\infty < z < \infty$$

How big are most of the values?

No matter what the shape of the distribution,

the bulk of the data are in the range "average ± a few SDs"

If a histogram is bell-shaped, then

- the SD is the distance between the average and the points of inflection on either side
- Almost all of the data are in the range "average ± 3 SDs"

Bounds and normal approximations

Percent in Range	All Distributions	Normal Distribution
average + 1 SD	at least 0%	about 68%
average ± 2 SDs	at least 75%	about 95%
average ± 3 SDs	at least 88.888%	about 99.73%

Central Limit Theorem

If the sample is

- large, and
- drawn at random with replacement,

then,

regardless of the distribution of the population,

the probability distribution of the sample sum (or of the sample average) is roughly bell-shaped