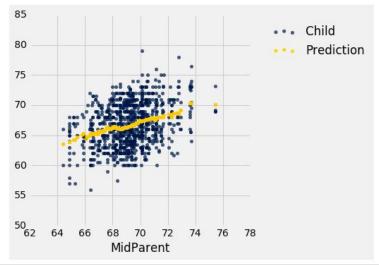


Lecture 29, November 2

The Regression Line

Slides created by Ani Adhikari and John DeNero

Announcements


- Project 2 deadline is Tuesday 11/8 at 7 p.m.
- Homework due this week as usual.
- There will be a small lab in lab, in addition to project time
- Prob 140 (Statistics 140) is now open for enrollment

The Correlation Coefficient *r*

- Measures linear association
- Based on standard units; pure number, not affected by changing units
- -1 ≤ r ≤ 1
 - r = 1: scatter is perfect straight line sloping up
 - r = -1: scatter is perfect straight line sloping down
- *r* = 0: No *linear* association; *uncorrelated*
- Not affected by switching axes

Prediction

- Guess outcomes in the future, based on available data
- One simple goal:
 - Predict the value of one variable based on another

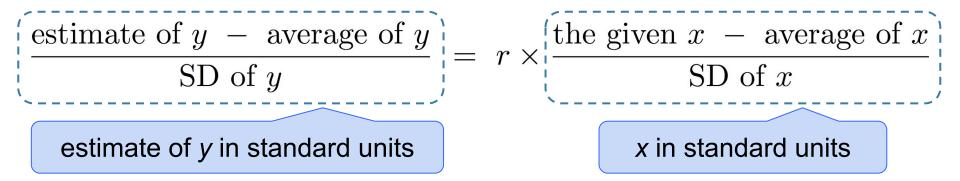
(Demo)

Regression to the Mean

- estimate of y = r · x, when both variables are measured in standard units
- If r = 0.6, and the given x is 2 standard units, then:
 The given x is 2 SDs above average
 The prediction for y is 1.2 SDs above average
- On average (though not for each individual), regression predicts *y* to be closer to the mean than *x* is

Regression Estimate, Method I

A course has a midterm (average 70; standard deviation 10) and a really hard final (average 50; standard deviation 12)


If the scatter of midterm & final scores for students looks like a typical oval with correlation 0.75, then...

What do you expect the average final score would be for Magentored 90 on the midterm?

2 standard units on midterm, so estimate $0.75 \times 2 = 1.5$ standard units on final. So estimated final score = $1.5 \times 12 + 50 = 68$ points

Regression Equation

In original units, the regression line has this equation:

Regression Line

Standard Units 2 y (0, 0) -2 -1 -2

Original Units (Average x, r * SD y Average y) SD x

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line $= r \cdot \frac{\text{SD of } y}{\text{SD of } x}$

intercept of the regression line = average of y - slope \cdot average of x

(Demo)

Regression Estimate, Method II

The equation of a regression line for estimating child's height based on midparent height is

estimated child's height = 0.64 · midparent height + 22.64

Estimate the height of someone whose midparent height is 69 inches.

0.64*69 + 22.64 = 66.8 inches