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Confidence Intervals

e Situation: we want to use a sample to estimate a parameter of
interest

e First step: we come up with an estimator/statistic to estimate the
parameter

o For example, sample mean to estimate population mean

e Problem: taking a sample (usually) involves randomness! How do we
know how good our estimate is?

e |dea: take many samples, see how much the estimate varies



Confidence Intervals

e This gave us the sampling
distribution of the estimator
e \What's the problem?

o We usually don’t have the
whole population to
re-sample from

o Resampling is expensive
and timely
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Confidence Intervals

e Solution: assume our sample has a similar make-up to the
population (the sample is representative of the population)
e Resample (with replacement) from the original sample
o Our resamples will be the same size as the original sample
o Bonus question: why does it have to be with replacement?
e Compute the same statistic/estimate for each resample
e This gives us an approximation to the true sampling distribution!
e This process is often called the bootstrap



Confidence Intervals

e Let's see an example where we want to estimate the average
height in the population!

e Suppose we have a sample of 100 heights in a table called samp
In [32]: samp.show(5)

heights

77.7092

70.3796

69.3899

52.9447

66.4166

... (95 rows omitted)



Confidence Intervals

#Create a collector array to store all the simulated values
boot_means = make_ array()
#For each repition of the process: (we recommend you usually run an iteration 10,000 times)
for i in np.arange(10000):
#Generate a new sample using the Bootstrap, the sample method has with replacement=True
#as default and samples the size of the table if no arguments are passed in

new_sample = samp.sample()

#calculate the value of the statistic based on the new sample
curr mean = np.mean(new_sample.column(0))

#Append this value to your collection array
boot_means = np.append(boot_means, curr_mean)



Confidence Intervals

boot means_dist = Table().with_column('sample mean', boot_means)
boot means_dist.hist()
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Confidence Intervals

e Great! Now we have an idea of how our estimate varies when we take
different random samples.
e Plots are awesome, but sometimes we want a more concise summary.
That's where confidence intervals come in.
e Idea: give a range of likely values for our estimate.
e Often we pick the middle 95% of our data.
o How? Use the percentile function!



Confidence Intervals

In [28]: print(percentile(2.5, boot_means.column(0)))
print(percentile(97.5, boot_means.column(0)))

63.9451909844
66.1985550428

e Conclusion: “we are 95% confident that the population mean is between
63.945 and 66.199”



Interpretation of Confidence Intervals

e Thereis not a 95% chance that the true population parameter is in our
calculated 95% confidence interval
o Iteitheris oris not

e It does also not tell us anything about the whole population
o Just the population parameter we’re attempting to estimate

e If we repeat the idea of making 95% confidence interval many times, we
expect 95% of them to contain the true population parameter
o  We will never actually know, as we don’t know the population parameter

e The larger our confidence, the larger the interval
o An 80% confidence interval is contained inside of a 90% interval



Hypothesis testing via confidence intervals

e Suppose we have a hypothesis test at the 0.05 level:
o Null: population mean = 50
o Alternative: population mean # 50

e Construct a 95% confidence interval for the population mean

e Reject the null if confidence interval does not contain 50

e Motivation: confidence interval contains set of "plausible” values for
population parameter. If 50 is not a plausible value for the parameter, the
hypothesis that the parameter is 50 is likely misguided

e Confidence level of interval should reflect significance level of test. e.g. For

test at 0.01 level, use 99% confidence interval
o  Why is this important?
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Center and Spread

e \Ways to measure the center

o Mean: Sensitive to outliers

o Median: Not so sensitive to outliers
e \Ways to measure the spread

o Standard deviation: Root mean square of deviations from the average
o Variance: SD*2 (Mean square of deviations from the average)
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Center and Spread: Normal Distribution

e Normal distribution:
o Bell shaped
o Center and spread tells us useful information about the normal curve
o Compared with Chebyshev bounds, these are much stronger!

Percent in Range All Distributions: Bound Normal Distribution: Approximation
average + 1 SD at least 0% about 68%
average + 2 SDs at least 75% about 95%

average + 3 SDs at least 88.888...% about 99.73%



Central Limit Theorem

The probability distribution of the sum (or
average) of a large random sample drawn
with replacement will be roughly normal,
regardless of the distribution of the
population from which the sample is drawn



Central Limit Theorem
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Conditions for the Central Limit Theorem

You're taking random samples from a population.
The sample size is kinda large.
The statistic you’re computing is the sum/average or some variant.

You're looking at the probability distribution of the statistic (or a valid approximation
of it).

LN -

Not conditions:

1.  The population must have a Normal distribution

a. If this were necessary, the theorem really wouldn’t be worth remembering!
2. The sample size has to be large relative to the population size.

a. No need, that's the magic of sampling!
3. You are trying to estimate the population mean

a. All that matters is the estimator, not your interpretation of it!



Variability of the Sample Mean

e Imagine sampling, many times, and calculating the mean of our sample to get
a rough picture of what the population mean is

e \Want to measure the standard deviation of all possible sample means

o Measure how far off sample means are from the population mean
o Also interpreted as the accuracy of the sample mean
m Does smaller SD of the means point to more or less accuracy?

Population SD

SD of all possible sample means =

\/sample size

O If you can’t get the population SD, use some approximation of it
o Notice that there’s no talk about the number of bootstrap repetitions



Variability of the Sample Mean

What happens as we change the sample size?
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Central Limit Theorem

The CLT states that the probability distribution of the sample mean is roughly
normal, centered at the population mean, with SD equal to the formula below

Population SD

SD of all possible sample means = :
\/sample size



