
STAT/CS 94 Fall 2015 Adhikari Midterm Material

1 Introduction

This document lists the broad programming topics you should know about for the midterm. It also lists, in cheat-sheet form, the
Python syntax and functions you might need to understand or use on the midterm.

2 Programming topics

2.1 General Python stuff

1. Basic expressions: Strings, numbers, booleans (True/False values)

2. Basic arithmetic on numbers; basic logical operators on booleans

3. Assigning names to values with =

4. Calling functions with ()

5. Accessing things: indexing lists and tables with []; accessing attributes and methods with .

6. Assigning other things with =: assigning slots in lists with []; adding columns to tables with []

7. Running code conditionally with if statements

8. Running code iteratively with for loops

9. Defining functions with def statements

10. Returning values from functions

11. Encapsulating blocks of code (or single “ideas”) into functions

12. Thinking about functions as values that happen to be callable with (), and passing functions as arguments to other functions
(”higher-order” functions)

2.2 Lists, arrays, and tables

1. Making lists with []

2. Making arrays from lists with np.array(...); making arrays of consecutive numbers with np.arange(...)

3. Making tables by reading data files with Table.read_table(...); directly using the Table(...) function

4. Zero-based indexing for lists and arrays, and the left-inclusive / right-exclusive behavior of np.arange and slice indexing

5. Producing a concatenated list from two lists with +

6. Differences between arrays and lists

7. Basic functions that do things with arrays, like np.sum, np.mean, and np.diff; operators like +, -, *, /, **, and & acting on
two arrays or on an array and a single value

8. Accessing columns of a table, which are just arrays

9. Making a table with a subset of the columns in an existing table with .select

10. Making a table with a subset of the rows in an existing table with .where; using logical operations on columns in combination
with .where to filter rows according to logical conditions

11. Making a bar chart from a categorical-valued table with .barh

12. Making a histogram from a table with .hist; making a density histogram; controlling the bin widths

13. Applying a function to each element of a column in a table with .apply (a higher-order function)

1

STAT/CS 94 Fall 2015 AdhikariMidterm Material

14. Joining two tables with .join

15. Grouping rows of a table together with .group; aggregating the groups with a function (making group a higher-order function)

16. Creating a “contingency table” or “pivot table” on two categorical columns of a table with .pivot; aggregating the contents
of each list-valued cell in the resulting table with a function (making pivot a higher-order function)

17. Sampling rows of a table (producing a new table) with .sample

18. Repeatedly sampling from a table, computing a statistic, and displaying the empirical distribution in a histogram (to approx-
imate the probability distribution of the statistic under sampling)

S
T
A
T
/
C
S
9
4
F
a
l
l
2
0
1
5
A
d
h
ik
a
r
iM

id
t
e
r
m

M
a
t
e
r
ia
l

3 Python cheat sheet

This cheat sheet is organized by topic, though some examples serve double-duty to
conserve space. Rather than give exhaustive documentation, we have created examples
that demonstrate behavior that might be hard to remember.

3.1 General Python stuff

"Hello, world!" # A string-valued expression

1 # An integer-valued expression

1.2 # A float-valued expression

True # A boolean-valued expression

3 ** 4 # An expression whose value is 3 to the 4th power

pow(3, 4) # A function call expression, also 3 to the 4th power

17 % 5 # An expression whose value is 2, the remainder when 17 is divided by 5

(17 % 5) == 2 # An expression whose value is True

"3.5" # An expression whose value is a string

float("3.5") # An expression whose value is the number 3.5

x = [1,2,3] # An assignment statement; [1,2,3] is a list expression

len(x) # A function call expression whose value is 3, the length of the list x

len([1,2,3]) # Also a function call expression with value 3

x[pow(2,1)] # An indexing expression with value 3

x[0:2] # A slice-indexing expression with value [1,2]

x + [4,5] # An expression with value [1,2,3,4,5]; adding lists concatenates

x[0] = 4 # An index assignment statement

t = Table([[0,1,4,9], [0,1,8,27]], [’squares’, ’cubes’]) # Making a table

t[’squares’] # An indexing expression with value equal to np.array([0,1,4,9])

t[’powers of two’] = [1,2,4,8] # An index assignment statement

Attribute access expression with value [’squares, ’cubes’, ’powers of two’]:

t.column_labels

t.num_rows # The number of rows in t

len(t.rows) # Also the number of rows in t; rows is a list of Row objects in t

A function that returns "fizz" if its argument is even, "buzz" otherwise.

Its name is fizz_if_even. It takes a single argument which we have given

the name an_integer; an_integer is defined (as though by an assignment

statement with =) while fizz_if_even is being called, but not outside.

def fizz_if_even(an_integer):

remainder_after_division_by_two = an_integer % 2

if remainder_after_division_by_two == 0:

return "fizz"

else:

return "buzz"

should_be_fizz = fizz_if_even(2)

should_be_buzz = fizz_if_even(3)

an_integer*3 # An error: an_integer is not defined here!

A function that is erroneously missing a return statement and does nothing

def multiply_by_three(a_number):

3*a_number

If we call this function and use the value of the call expression, the value

is nothing, not three times the argument.

should_have_been_six = multiply_by_three(2) # Doesn’t do what we wanted!

A function that causes a density histogram with bins -2:0,0:1,1:4 to be made.

def make_a_histogram(table):

table.hist(bins=[-2,0,1,4], normed=True)

Note: No histogram has been made at this point. Calling the function

executes the code inside it and makes a histogram appear.

make_a_histogram(Table([[0,0,2,3]],[’nums’]))

A second histogram is made if the function is called again.

make_a_histogram(Table([[1.2,1.3,3.2,-1.2]],[’other_nums’])

A function that returns a list in which func has been applied, and then

applied again, to each element of the_list. Uses a for loop. When the for

loop is reached, the code inside the for loop is executed once for each

element of the_list, and the name an_item is set equal to a different element

of the_list each time the code inside the loop is executed. Once the for

loop has been executed len(the_list) times, the next line (return result, in

this case) is executed.

So apply_twice(math.sqrt, [16, 81]) equals [2.0, 3.0].

def apply_twice(func, the_list):

result = []

for an_item in the_list:

result = result + [func(func(an_item))]

return result

3.2 Array-specific stuff

small_primes_array = np.array([2,3,5,7,11])

odd_positive_integers_less_than_nine = np.arange(1, 9, 2)

np.array([1,2,3]) + np.array([2,3,4]) # An array equal to np.array([3,5,7])

np.sum(np.array([-2.2,1.0,0.0])) # -1.2

np.mean(np.array([-2.2,1.0,0.0])) # -0.4

np.diff(np.array([-1,3,2,5,5,0])) # An array equal to np.array([4,-1,3,0,-5])

np.array([1,2,3]) - 1 # An array equal to np.array([0,1,2])

np.array([1,2,3]) ** 2 # An array equal to np.array([1,4,9])

2 ** np.array([1,2,3]) # An array equal to np.array([2,4,8])

np.array([1,2,3]) >= 2 # An array equal to np.array([False,True,True]))

An array of booleans equal to np.array([True,False,False]); element 1 of

array 1 is logically AND-ed with element 1 of array 2, and so on

np.array([True,False,False]) & np.array([True,True,False])

np.count_nonzero(np.array([True, False, True])) # 2, the number of True values

counter = 0 # After the for loop, equal to 0 + 1 + 2 + ... + 99, or 4950.

for index in np.arange(100):

counter = counter + index

3.3 Table-specific stuff

u = Table.read_table(’some_data_file.csv’) # A table built from a data file

t[’squares’] + t[’cubes’]# An expression with value np.array([0,2,12,36])

S
T
A
T
/
C
S
9
4
F
a
l
l
2
0
1
5
A
d
h
ik
a
r
iM

id
t
e
r
m

M
a
t
e
r
ia
l

t[’squares’] > 3 # An expression with value np.array([False,False,True,True])

A table with only the first row of t:

t.where(np.array([True,False,False,False]))

t.where(t[’squares’] > 3) # A table with only the last and 2nd-to-last rows of t

t.select([’squares’]) # A table with only one column, squares

A bar chart with a length-4 bar for apples, a length-11 bar for oranges, etc.

v = Table([[4,11,2],[’apples’,’oranges’,’kiwis’]],[’count’,’fruit’])

v.barh(’fruit’)

t.apply(math.sqrt,’squares’) # An array with value np.array([0.0,1.0,2.0,3.0])

Demonstrating join(). In x.join(’a’,y,’b’), we go through the rows of table

x one by one, building a resulting joined table. We look at the value K of

column ’a’ in that row. Then we look for the first row in table y where the

value of column ’b’ is K. If there is such a matching row, we add the row

from x to the joined table and we adjoin the columns in the matching row to

that row. So table j below has 3 rows, one for Ann, Bob, and Dan; each row

has ’name’ and ’favorite fruit’ from table w and the count of that person’s

favorite fruit from table v. Cathy is missing from j because her favorite

fruit didn’t appear in v. There is no row in j with favorite fruit kiwi,

since no one in w had that favorite fruit.

w = Table([[’Ann’,’Bob’,’Cathy’,’Dan’],[’apples’,’oranges’,’peaches’,’apples’]],

[’name’,’favorite fruit’])

j = w.join(’favorite fruit’,v,’fruit’)

Demonstrating group(). We choose a column and make a new table with one

row for each unique value in that column; rows with the same value of that

column are squashed together. For each other column, the value in each new

row is the list of values of that column for the rows that were squashed

together. So the following expression’s value is a table with 3 rows, for

apples, oranges and peaches; the row with favorite fruit ’apples’ has ’name’

equal to [’Ann’,’Dan’], the row with favorite fruit ’oranges’ has ’name’

equal to [’Bob’], and the row with favorite fruit ’peaches’ has ’name’ equal

to [’Cathy’].

w.group(’favorite fruit’)

We can have group() apply a function to each value list. For example, len

will tell us the number of things in the list. So the following expression’s

value is equal to:

Table([[’apples’,’oranges’,’peaches’],[2,1,1]],[’favorite fruit’,’name len’])

w.group(’favorite fruit’, collect=len)

Demonstrating pivot(). Say that we also know everyone’s favorite color, and

we want to know who has each <favorite color, favorite fruit> pair (for

example, who likes apples and red). w.pivot() does this by producing a new

table summarizing w in that way. Say we want colors to appear on the

vertical axis (i.e. each color gets a row in the resulting table) and fruits

to appear on the horizontal axis (i.e. each fruit gets a column in the

resulting table). And in each cell of the table we want a list of the names

of the people who like that <color, fruit> pair. Then we would say:

w[’favorite color’] = [’red’,’blue’,’red’,’blue’] # Set up the table.

w.pivot(’favorite fruit’, ’favorite color’, ’name’)

The result looks like this:

favorite color | apples name | oranges name | peaches name

blue | [’Dan’] | [’Bob’] | None

red | [’Ann’] | None | [’Cathy’]

Now say we want to know the number of people in each category instead of

the list of their names. As with group(), we can pass a function to be

applied to each list:

w.pivot(’favorite fruit’, ’favorite color’, ’name’, collect=len)

The result looks like this:

favorite color | apples name | oranges name | peaches name

blue | 1 | 1 | 0

red | 1 | 0 | 1

Demonstrating sample(). Say that we want to sample numbers from 1 to N,

inclusive on both sides. We make a table with one column containing those

values. sample() returns a new table with the same columns as the original

but with 0 to several repetitions of each row. The total number of rows is

the first argument. Whether the sampling is done without replacement (a

row can be selected only once) or with replacement (each time a row is

is selected we choose among all the rows) is controlled by the second

argument. sample() doesn’t care what the content of the rows is, but we’ll

use a simple table with 1 column in these examples. The sampling table could

also be a table of people or zip codes with several columns, if that’s what

we wanted to sample.

N = 6 # Maybe we’re simulating a die roll.

potential_numbers = np.arange(1,N+1,1)

sampling_table = Table([potential_numbers],[’nums’])

three_random_rolls = sampling_table.sample(3, with_replacement=True)

three_distinct_random_rolls = sampling_table.sample(3, with_replacement=False)

We could get an array of numbers like this:

two_random_rolls_array = sampling_table.sample(2, with_replacement=True)[’nums’]

We could get a single number like this:

one_random_number = sampling_table.sample(1, with_replacement=True)[’nums’][0]

