
STAT/CS 94 Fall 2015 Adhikari Practice Midterm Questions

This handout collects a bunch of practice questions for the midterm exam. Don’t worry: The actual
midterm will not have this many problems, and some of the problems here would be too long for the midterm.
(The exam is one class period long – 50 minutes.)

A separate handout, which will eventually be available online, includes answers for the problems here.
Do the problems before looking at the answers.

Some questions ask you to write code that produces a certain value. In that case, your code may be
multiple lines (multiple statements), but the last statement in your code should be an expression whose value
is the value the question asks for.

Problem 1 Whimsical Warmups

(a) Write Python code that defines a function named is_long. The function should take a single argument,
a list named the_list, and return a boolean value. is_long should return True if the_list has length
greater than or equal to 42, and False otherwise.

(b) Now suppose that we have defined is_long as described above (even if you didn’t do that part). Suppose
we have also defined two lists named some_things and other_things, respectively. Write Python code
that produces the value True if the concatenation of some_things and other_things (that is, the list
you get when you append other_things to some_things) is long (that is, has length greater than or
equal to 42), and False otherwise.

(c) Suppose we have a table called students with a single column labeled "names". We would like to add
a column containing abbreviated versions of the names to this table. Let’s call it "abbrv nms". To
abbreviate a name, we take the first 4 characters in it, including any spaces in the name. (If it’s already
less than 4 characters, we take the whole thing.) Assuming students has already been defined with
the table "names", write Python code that adds this new column (again, with name "abbrv nms") to
students. There is a (minor) restriction: You may use one for loop in your code or call the Table
method apply once, but not both.

(d) Write code that does the same thing as in the previous part, but do it in the way you didn’t do last time
– use for if you used apply, and vice versa. If you used neither for nor apply in the previous part,
write code that (sensibly) makes use of a for loop or of the method apply (but not both).

Answer:

(a) def is_long(the_list):

return len(the_list) >= 42

If you’re not comfortable with directly returning the boolean value as above (which looks weird to some
people, at first), you could write something more verbose:

def is_long(the_list):

if len(the_list) >= 42:

return True

else:

return False

1

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

(b) is_long(some_things + other_things)

(c) def abbreviate(name):

ABBREVIATION_SIZE = 4

if len(name) <= 4:

return name

else:

return name[0:4]

students["abbrv nms"] = students.apply(abbreviate, "names")

(d) ABBREVIATION_SIZE = 4

abbreviated_names = []

names = students["names"]

for name_index in np.arange(students.num_rows):

name = names[name_index]

if len(name) <= 4:

abbreviated_name = name

else:

abbreviated_name = name[0:4]

abbreviated_names.append(abbreviated_name) would be better style

here, but we don’t expect you to remember the append method on the

exam.

abbreviated_names = abbreviated_names + [abbreviated_name]

students["abbrv nms"] = abbreviated_names

Problem 2 Python Parody

(a) Describe, in concise English, what the following Python statement does:

def mystery(the_list):

another_list = []

for elt in the_list:

another_list = [elt] + another_list

return another_list

(b) Describe, in concise English, what the following Python statement does:

def science(the_list, the_function):

another_list = []

for elt in the_list:

if the_function(elt):

another_list = another_list + [elt]

return another_list

(c) Suppose we execute both of the above statements and then this code:

def three_thousand(a_string):

if a_string == "snakes":

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

return False

elif a_string == "spiders":

return False

else:

return True

theater = ["watch", "out", "for", "snakes"]

mystery(science(theater, three_thousand))

Describe, in concise English, the value of the last expression.

Answer:

(a) The Python statement defines a function named mystery that reverses a list. Given a list, the defined
function produces a new list in the opposite order of the original list.

(b) The Python statement defines a function named science that filters a list. Given a list and a function,
the defined function produces a new list containing a subset of the original list. Each element is included
if a given function returns True when called with that element as its argument.

(c) The value is a list of strings: “for”, “out”, and “watch”, in that order. (Calling science on theater

removes “snakes”, and then mystery reverses the remaining elements.)

Problem 3 Sloppy Syntax

Below are several snippets of Python code, and some contain common bugs. Using your best judgement (and
careful reading), determine which ones have bugs – that is, which ones don’t do what the author probably
intended. For the ones with bugs, write a fixed version of the code. If there are no bugs, write “OK”.

Assume that the usual imports (for example, import numpy as np and from datascience import *)
have already been executed. Also assume that a table named marathon_data has been created and contains
columns named “Time (seconds)” and “Name”.

1. finish_times = marathon_data["Time (seconds)"]

average_finish_time = np.mean(finish_times)

2. marathon_data.sort("Time (seconds)", descending=False)

fastest_runner_name = marathon_data["Name"][0]

3. QUALIFYING_TIME = 8280

qualifying_runners = marathon_data.where("Time (seconds)" <= QUALIFYING_TIME)

qualifying_runner_names = qualifying_runners["Name"]

4. QUALIFYING_TIME = 8280

def create_message(finish_time):

if finish_time <= QUALIFYING_TIME:

return "Congratulations, you qualified for the 2016 US Olympic team!"

else:

return "Better luck in 2020! :-("

marathon_data["Messages"] = marathon_data.apply(create_message, "Time (seconds)")

Answer:

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

1. OK. (The first line assigns the name finish_times to an array of finish times, a column from
marathon_data. The second line computes the average.)

2. marathon_data = Table.read_table("marathons.csv")

sorted_marathon_data = marathon_data.sort("Finish time", descending=False)

fastest_person_name = sorted_marathon_data["Name"][0]

(The Table method sort produces a new table and doesn’t modify the table we call it on. So in the
original code, the second line does nothing, and the table doesn’t end up sorted.)

3. QUALIFYING_TIME = 8280

qualifying_runners = marathon_data.where(marathon_data["Time (seconds)"] <= QUALIFYING_TIME)

qualifying_runner_names = qualifying_runners["Name"]

(The expression in the original code "Time (seconds)" <= QUALIFYING_TIME compares a string to a
number, which makes no sense. Instead we want to compare each element of the “Time (seconds)”
column of marathon_data to QUALIFYING_TIME, get an array of booleans, and pass that to where.)

4. OK. (The code creates a new column in marathon_data with a congratulatory or consolatory message
for each runner, depending on whether the runner’s marathon time was short enough to qualify.)

Problem 4 Fortuitous Function

An analyst was working with a dataset in a table called the_table. The data required some manipulation be-
fore she could work with them. Specifically, the_table included a column called "percent complete" listing
percentages as strings, but the analyst needed to work with numerical proportions (that is, with floating-point
numbers that are proportions rather than percentages). The analyst found two kinds of strings in the data: a
number followed by a percent sign (like “95%” or “0.1%”), or a number followed by “ percent”, like “95 per-
cent” or “0.1 percent”. She wrote a function to convert a string in either format to a proportion (a number)
and used it to make a new column of proportions using apply. (For example, if she had named her function
foo, she would have written the_table["proportion complete"] = the_table.apply(foo, "percent complete").)

(a) Describe the function you would write in this situation, using 3-4 English sentences. What is its name,
what is its signature, what kind of thing does it output, and what does it do?

(b) Write Python code that defines your function. Hint: The function float may be useful.

Answer: Note that our answer is just an example of a fully-correct answer. For example, you probably
didn’t come up with exactly the same function name as we did.

1. The function is named convert_percentage. It takes a single argument, a string named percentage_string.
The argument is expected to contain a percentage followed by either "%" or " percent". The function
returns a number, the proportion represented by that string.

2. def convert_percentage(percentage_string):

if percentage_string[-1] == "%":

end_offset = len("%")

else:

end_offset = len(" percent")

string_without_suffix = percentage_string[0:len(percentage_string)-end_offset]

percentage = float(string_without_suffix)

return percentage / 100

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

Problem 5 Senior Sample

A simple random sample of voters taken from the U.S. voting population is classified by senior citizen status
(yes, no) and political party affiliation (Republican, Democratic, other). The sampled voters’ names are
removed and replaced by ID numbers 1, 2, 3, etc. The data are entered into a table called voters, each
row corresponding to one voter. The table has three columns, the first of which contains the ID numbers
in increasing order and is called ID. The second is called sen_cit and contains “yes” or “no” in each row
depending on whether the voter is a senior citizen or not. The third column is called party and contains
the party affiliations “R,” “D,” and “O.”

(a) Write code that produces (in any clear form) the senior citizen status and party affiliation of Sampled
Voter Number 17.

(b) Write code that produces the party affiliations of all the senior citizens. Say whether your code produces
a table, an array, or a list.

(c) Write code that produces the party affiliation most common among the senior citizens, and the number
of senior citizens with that affiliation. You may pick any reasonable output format, but please document
it. (For example, if your function produces a string that is the party affiliation and number of people
concatenated together (which is not a great idea), you should write a comment that says that’s what
your function returns.) Be careful: if there is more than one “most common” affiliation, your code should
produce the information for all of the affiliations that are tied for most common.

Answer:

(a) voter_seventeen_table = voters.where(voters["ID"] == 17)

voter_info = [voter_seventeen_table["sen_cit"][0], voter_seventeen_table["party"][0]]

voter_info

(b) seniors = voters.where(voters["sen_cit"] == "yes")

seniors["party"]

Our code produces an array. (Columns of tables are arrays.)

(c) seniors = voters.where(voters["sen_cit"] == "yes")

party_counts = seniors.select(["party","ID"]).group("party", collect=len)

party_counts_sorted = party_counts.sort("ID len", descending=True)

biggest_party_count = party_counts_sorted["ID len"][0]

biggest_parties = party_counts_sorted.where(party_counts_sorted["ID len"] == biggest_party_count)

biggest_parties

Our code produces a table with a row for each most-common party affiliation; the column party gives
the affiliation and the column "ID len" gives the number of seniors with that affiliation. (It’s okay if
you forgot that group appends " len" to the name of the "ID" column.)

Problem 6 Hip Hypotheses

(This problem continues the previous problem.) The surveyors wonder whether there is any relation between
party affiliation and being a senior citizen. Help them develop an answer, in the following steps.

(a) State null and alternative hypotheses as precisely as possible. You might want to review this part after
you’ve done the next part, to make sure that your answers are consistent.

(b) In order to test your null hypothesis, what kind of statistical test will you perform, and what test statistic
will you use? Justify your choices.

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

(c) Write Python code that defines a function named proportion_greater. It should take two arguments:

(1) a list of statistics (numbers); and

(2) a single statistic (a number).

For example, the first argument might be a list of means computed under a null hypothesis, in which
case the second argument would be the mean of an observed dataset. It should return the proportion of
elements in the list that are greater than the single statistic.

(d) Write code that tests your null hypothesis, calculates an empirical P -value, and produces a conclusion
(False if you reject the null hypothesis and True otherwise). You can use a 2.5% cutoff this time. As
before, you are free to use any function that you have defined in this homework, but please don’t just
call functions that have been defined in class.

You don’t have to write everything from scratch. We have provided a function to compute the test
statistic for a table like voters for you. Our code assumes that the test statistic is the total variation
distance between the distribution of party affiliations of seniors and the distribution of party affiliations
of non-seniors. You may also find the function proportion_greater, which you just defined above,
useful. (You can assume that it is implemented correctly even if you didn’t do the previous part.)

You can ignore this.

def normalize(table, column_name):

table[column_name] = table[column_name] / sum(table[column_name])

Takes a table in the same format as the voters table. Returns

the total variation distance between the distribution of party

affiliations of seniors and the distribution of party affiliations

of non-seniors.

def test_statistic(sample):

proportions = sample.pivot("sen_cit", "party", "ID", collect=len)

proportions.relabel("yes ID", "senior")

proportions.relabel("no ID", "non-senior")

normalize(proportions, "senior")

normalize(proportions, "non-senior")

return 0.5 * sum(abs(proportions["senior"] - proportions["non-senior"]))

Takes a table in the same format as the voters table. Returns

False if you reject the null hypothesis (as you defined it above), and

True otherwise.

def test_independence_hypothesis(data):

Fill in your hypothesis test code here. This function should

return a boolean value as described in the documentation comment

above.

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

test_independence_hypothesis(voters)

Answer:

(a) Null hypothesis: Party affiliation and being a senior citizen are independent and any observed differences
between the affiliations of seniors and those of non-seniors are due to random chance. Alternative
hypothesis: Party affiliation and being a senior citizen are somehow related.

(b) Under the null hypothesis, the party affiliation proportions should be about the same for seniors and
non-seniors, up to random variation. So our test statistic will be the total variation distance between
the distribution of affiliations for seniors and the distribution of affiliations for non-seniors.

Random variation will make the test statistic non-zero even if the null hypothesis is true. So we would
like to be able to generate data under the assumption that the null hypothesis is true, and see how large
the test statistic typically will be under that hypothesis. To do that, we can use a permutation test :
Under the null, any permutation of the party affiliations has the same distribution, so we can permute
the party affiliations in our data to generate new samples under the null.

We will repeatedly permute the party affiliations and compute the test statistic for each permuted data
set. Then we will look at the distribution of test statistics. Qualitatively, if the test statistic we actually
observed is “in the tail” of this histogram (that is, larger than most of the test statistics we would see if
the null were true), then that is evidence against the null hypothesis. Quantitatively, we could compute
an empirical P -value – the proportion of test statistics larger than the one we observed – and decide to
reject the null if that P -value is smaller than, say, 0.025.

(c) def proportion_greater(statistics_under_null, actual_statistic):

num_greater_simulated_statistics = np.count_nonzero(np.array(statistics_under_null) > actual_statistic)

return num_greater_simulated_statistics / len(statistics_under_null)

(d) def test_independence_hypothesis(data):

Fill in your hypothesis test code here.

n = data.num_rows

actual_statistic = test_statistic(data)

statistics_under_null = []

NUM_SIMULATIONS = 10000

simulation_data = data.select(["party", "sen_cit", "ID"])

for simulation_index in np.arange(NUM_SIMULATIONS):

permuted_party = simulation_data.select("party").sample(n, with_replacement=False)["party"]

simulation_data["party"] = permuted_party

simulated_test_statistic = test_statistic(simulation_data)

statistics_under_null = statistics_under_null + [simulated_test_statistic]

p = proportion_greater(statistics_under_null, actual_statistic)

return p >= 0.025

test_independence_hypothesis(voters)

STAT/CS 94 Fall 2015 AdhikariPractice Midterm Questions

Problem 7 Bin Boon

Suppose we would like to make a histogram of some data. Figuring out good bins for a histogram can be
hard, so we decide to use the bins we used last time we analyzed a similar dataset. But our existing bins
don’t quite cover all of our data; the maximum is too low and the minimum is too high. We would like to
modify the bins so that they do.

We are going to define a function called stretch_bins. This function shifts and rescales an increasing
array of numbers to have a new minimum and maximum, stretching the middle values proportionally. It
takes three arguments:

(1) an array (of length at least 2) containing floating-point numbers in increasing order (the kind of thing
we might pass as bins to the hist function, like np.array([-1.0,1.5,2.0,4.0]));

(2) a number, the new minimum value of the array; and

(3) a number, the new maximum value of the array.

stretch_bins returns a new array whose first value is the new minimum value and whose last value is the
new maximum value. The array is still in increasing order, and the entries in the middle are rescaled so that
the ratios of the distances between consecutive numbers are the same as in the original array.

For example, stretch_bins(np.array([-1.0,1.5,2.0,4.0]), 1.0, 11.0) should return an array equal
to np.array([1.0, 6.0, 7.0, 11.0]).

(a) What is the value of stretch_bins(np.arange(-1.0,4.0,1.0), -5.0, 15.0)?

(b) What is the value of stretch_bins(np.array([3.0,4.0,6.0,7.0]), -4.0,-2.0)?

(c) Write Python code that defines stretch_bins.

Answer:

(a) np.array([-5.0,0.0,5.0,10.0,15.0])

(b) np.array([-4.0,-3.5,-2.5,-2.0])

(c) def stretch_bins(bins, new_min, new_max):

new_range = new_max - new_min

old_range = bins[-1] - bins[0]

rescaling_factor = new_range / old_range

rescaled_bins = rescaling_factor * bins

shift_amount = new_min - rescaled_bins[0]

shifted_bins = rescaled_bins + shift_amount

return shifted_bins

