
In [144]: # HIDDEN
import matplotlib
matplotlib.use('Agg')
from datascience import *
%matplotlib inline
import matplotlib.pyplot as plots
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import math
import scipy.stats as stats
plots.style.use('fivethirtyeight')

Classification
This lecture we're going to study machine learning. Machine learning is a class of techniques for
automatically finding patterns in data and using it to draw inferences or make predictions. We're going to
focus on a particular kind of machine learning, namely, classification.

Classification is about learning how to make predictions from past examples: we're given some
examples where we have been told what the correct prediction was, and we want to learn from those
examples how to make good predictions in the future. Here are a few applications where classification is
used in practice:

For each order Amazon receives, Amazon would like to predict: is this order fraudulent? They
have some information about each order (e.g., its total value, whether the order is being
shipped to an address this customer has used before, whether the shipping address is the
same as the credit card holder's billing address). They have lots of data on past orders, and
they know whether which of those past orders were fraudulent and which weren't. They want to
learn patterns that will help them predict, as new orders arrive, whether those new orders are
fraudulent.
Online dating sites would like to predict: are these two people compatible? Will they hit it off?
They have lots of data on which matches they've suggested to their customers in the past, and
they have some idea which ones were successful. As new customers sign up, they'd like to
predict make predictions about who might be a good match for them.
Doctors would like to know: does this patient have cancer? Based on the measurements from
some lab test, they'd like to be able to predict whether the particular patient has cancer. They
have lots of data on past patients, including their lab measurements and whether they
ultimately developed cancer, and from that, they'd like to try to infer what measurements tend
to be characteristic of cancer (or non-cancer) so they can diagnose future patients accurately.
Politicians would like to predict: are you going to vote for them? This will help them focus
fundraising efforts on people who are likely to support them, and focus get-out-the-vote efforts
on voters who will vote for them. Public databases and commercial databases have a lot of
information about most people: e.g., whether they own a home or rent; whether they live in a
rich neighborhood or poor neighborhood; their interests and hobbies; their shopping habits;
and so on. And political campaigns have surveyed some voters and found out who they plan to
vote for, so they have some examples where the correct answer is known. From this data, the
campaigns would like to find patterns that will help them make predictions about all other
potential voters.

All of these are classification tasks. Notice that in each of these examples, the prediction is a yes/no
question -- we call this binary classification, because there are only two possible predictions. In a
classification task, we have a bunch of observations. Each observation represents a single individual or a
single situation where we'd like to make a prediction. Each observation has multiple attributes, which are
known (e.g., the total value of the order; voter's annual salary; and so on). Also, each observation has a
class, which is the answer to the question we care about (e.g., yes or no; fraudulent or not; etc.).

Chronic kidney disease
Let's work through an example. We're going to work with a data set that was collected to help doctors
diagnose chronic kidney disease (CKD). Each row in the data set represents a single patient who was
treated in the past and whose diagnosis is known. For each patient, we have a bunch of measurements
from a blood test. We'd like to find which measurements are most useful for diagnosing CKD, and
develop a way to classify future patients as "has CKD" or "doesn't have CKD" based on their blood test
results.

Let's load the data set into a table and look at it.

For instance, with the Amazon example, each order corresponds to a single observation. Each
observation has several attributes (e.g., the total value of the order, whether the order is being shipped
to an address this customer has used before, and so on). The class of the observation is either 0 or 1,
where 0 means that the order is not fraudulent and 1 means that the order is fraudulent. Given the
attributes of some new order, we are trying to predict its class.

Classification requires data. It involves looking for patterns, and to find patterns, you need data. That's
where the data science comes in. In particular, we're going to assume that we have access to training
data: a bunch of observations, where we know the class of each observation. The collection of these
pre-classified observations is also called a training set. A classification algorithm is going to analyze the
training set, and then come up with a classifier: an algorithm for predicting the class of future
observations.

Note that classifiers do not need to be perfect to be useful. They can be useful even if their accuracy is
less than 100%. For instance, if the online dating site occasionally makes a bad recommendation, that's
OK; their customers already expect to have to meet many people before they'll find someone they hit it
off with. Of course, you don't want the classifier to make too many errors -- but it doesn't have to get the
right answer every single time.

In [145]: ckd = Table.read_table('ckd.csv')
ckd

We have data on 158 patients. There are an awful lot of attributes here. The column labelled "Class"
indicates whether the patient was diagnosed with CKD: 1 means they have CKD, 0 means they do not
have CKD.

Let's look at two columns in particular: the hemoglobin level (in the patient's blood), and the blood
glucose level (at a random time in the day; without fasting specially for the blood test). We'll draw a
scatter plot, to make it easy to visualize this. Red dots are patients with CKD; blue dots are patients
without CKD. What test results seem to indicate CKD?

Out[145]:

Age
Blood
Pressure

Specific
Gravity

Albumin Sugar
Red
Blood
Cells

Pus Cell
Pus Cell
clumps

Bacteria

48 70 1.005 4 0 normal abnormal present notpresent

53 90 1.02 2 0 abnormal abnormal present notpresent

63 70 1.01 3 0 abnormal abnormal present notpresent

68 80 1.01 3 2 normal abnormal present present

61 80 1.015 2 0 abnormal abnormal notpresent notpresent

48 80 1.025 4 0 normal abnormal notpresent notpresent

69 70 1.01 3 4 normal abnormal notpresent notpresent

73 70 1.005 0 0 normal normal notpresent notpresent

73 80 1.02 2 0 abnormal abnormal notpresent notpresent

46 60 1.01 1 0 normal normal notpresent notpresent

... (148 rows omitted)

In [146]: plots.figure(figsize=(8,8))
plots.scatter(ckd['Hemoglobin'], ckd['Blood Glucose Random'], c=c
kd['Class'], s=30)
plots.xlabel('Hemoglobin')
plots.ylabel('Glucose')

Out[146]: <matplotlib.text.Text at 0x7f0ef64efc50>

Suppose Alice is a new patient who is not in the data set. If I tell you Alice's hemoglobin level and
blood glucose level, could you predict whether she has CKD? It sure looks like it! You can see a very
clear pattern here: points in the lower-right tend to represent people who don't have CKD, and the rest
tend to be folks with CKD. To a human, the pattern is obvious. But how can we program a computer to
automatically detect patterns such as this one?

Well, there are lots of kinds of patterns one might look for, and lots of algorithms for classification. But
I'm going to tell you about one that turns out to be surprisingly effective. It is called nearest neighbor
classification. Here's the idea. If we have Alice's hemoglobin and glucose numbers, we can put her
somewhere on this scatterplot; the hemoglobin is her x-coordinate, and the glucose is her y-
coordinate. Now, to predict whether she has CKD or not, we find the nearest point in the scatterplot
and check whether it is red or blue; we predict that Alice should receive the same diagnosis as that
patient.

In other words, to classify Alice as CKD or not, we find the patient in the training set who is "nearest"
to Alice, and then use that patient's diagnosis as our prediction for Alice. The intuition is that if two
points are near each other in the scatterplot, then the corresponding measurements are pretty similar,
so we might expect them to receive the same diagnosis (more likely than not). We don't know Alice's
diagnosis, but we do know the diagnosis of all the patients in the training set, so we find the patient in
the training set who is most similar to Alice, and use that patient's diagnosis to predict Alice's
diagnosis.

The scatterplot suggests that this nearest neighbor classifier should be pretty accurate. Points in the
lower-right will tend to receive a "no CKD" diagnosis, as their nearest neighbor will be a blue point.
The rest of the points will tend to receive a "CKD" diagnosis, as their nearest neighbor will be a red
point. So the nearest neighbor strategy seems to capture our intuition pretty well, for this example.

However, the separation between the two classes won't always be quite so clean. For instance,
suppose that instead of hemoglobin levels we were to look at white blood cell count. Look at what
happens:

In [147]: plots.figure(figsize=(8,8))
plots.scatter(ckd['White Blood Cell Count'], ckd['Blood Glucose R
andom'], c=ckd['Class'], s=30)
plots.xlabel('White Blood Cell Count')
plots.ylabel('Glucose')

Out[147]: <matplotlib.text.Text at 0x7f0ef64964a8>

As you can see, non-CKD individuals are all clustered in the lower-left. Most of the patients with CKD
are above or to the right of that cluster... but not all. There are some patients with CKD who are in the
lower left of the above figure (as indicated by the handful of red dots scattered among the blue
cluster). What this means is that you can't tell for certain whether someone has CKD from just these
two blood test measurements.

If we are given Alice's glucose level and white blood cell count, can we predict whether she has CKD?
Yes, we can make a prediction, but we shouldn't expect it to be 100% accurate. Intuitively, it seems
like there's a natural strategy for predicting: plot where Alice lands in the scatter plot; if she is in the
lower-left, predict that she doesn't have CKD, otherwise predict she has CKD. This isn't perfect -- our
predictions will sometimes be wrong. (Take a minute and think it through: for which patients will it
make a mistake?) As the scatterplot above indicates, sometimes people with CKD have glucose and
white blood cell levels that look identical to those of someone without CKD, so any classifier is
inevitably going to make the wrong prediction for them.

Can we automate this on a computer? Well, the nearest neighbor classifier would be a reasonable
choice here too. Take a minute and think it through: how will its predictions compare to those from the
intuitive strategy above? When will they differ? Its predictions will be pretty similar to our intuitive
strategy, but occasionally it will make a different prediction. In particular, if Alice's blood test results
happen to put her right near one of the red dots in the lower-left, the intuitive strategy would predict
"not CKD", whereas the nearest neighbor classifier will predict "CKD".

There is a simple generalization of the nearest neighbor classifier that fixes this anomaly. It is called the
k-nearest neighbor classifier. To predict Alice's diagnosis, rather than looking at just the one neighbor
closest to her, we can look at the 3 points that are closest to her, and use the diagnosis for each of
those 3 points to predict Alice's diagnosis. In particular, we'll use the majority value among those 3
diagnoses as our prediction for Alice's diagnosis. Of course, there's nothing special about the number
3: we could use 4, or 5, or more. (It's often convenient to pick an odd number, so that we don't have to
deal with ties.) In general, we pick a number , and our predicted diagnosis for Alice is based on the
patients in the training set who are closest to Alice. Intuitively, these are the patients whose blood
test results were most similar to Alice, so it seems reasonable to use their diagnoses to predict Alice's
diagnosis.

The -nearest neighbor classifier will now behave just like our intuitive strategy above.

k k
k

k

Decision boundary
Sometimes a helpful way to visualize a classifier is to map the region of space where the classifier
would predict 'CKD', and the region of space where it would predict 'not CKD'. We end up with some
boundary between the two, where points on one side of the boundary will be classified 'CKD' and
points on the other side will be classified 'not CKD'. This boundary is called the decision boundary.
Each different classifier will have a different decision boundary; the decision boundary is just a way to
visualize what criteria the classifier is using to classify points.

Banknote authentication
Let's do another example. This time we'll look at predicting whether a banknote (e.g., a $20 bill) is
counterfeit or legitimate. Researchers have put together a data set for us, based on photographs of
many individual banknotes: some counterfeit, some legitimate. They computed a few numbers from
each image, using techniques that we won't worry about for this course. So, for each banknote, we
know a few numbers that were computed from a photograph of it as well as its class (whether it is
counterfeit or not). Let's load it into a table and take a look.

In [148]: banknotes = Table.read_table('banknote.csv')
banknotes

Let's look at whether the first two numbers tell us anything about whether the banknote is counterfeit
or not. Here's a scatterplot:

Out[148]: WaveletVar WaveletSkew WaveletCurt Entropy Class

3.6216 8.6661 -2.8073 -0.44699 0

4.5459 8.1674 -2.4586 -1.4621 0

3.866 -2.6383 1.9242 0.10645 0

3.4566 9.5228 -4.0112 -3.5944 0

0.32924 -4.4552 4.5718 -0.9888 0

4.3684 9.6718 -3.9606 -3.1625 0

3.5912 3.0129 0.72888 0.56421 0

2.0922 -6.81 8.4636 -0.60216 0

3.2032 5.7588 -0.75345 -0.61251 0

1.5356 9.1772 -2.2718 -0.73535 0

... (1362 rows omitted)

In [149]: plots.figure(figsize=(8,8))
plots.scatter(banknotes['WaveletVar'], banknotes['WaveletCurt'],
c=banknotes['Class'])

Pretty interesting! Those two measurements do seem helpful for predicting whether the banknote is
counterfeit or not. However, in this example you can now see that there is some overlap between the
blue cluster and the red cluster. This indicates that there will be some images where it's hard to tell
whether the banknote is legitimate based on just these two numbers. Still, you could use a -nearest
neighbor classifier to predict the legitimacy of a banknote.

Take a minute and think it through: Suppose we used (say). What parts of the plot would the
classifier get right, and what parts would it make errors on? What would the decision boundary look
like?

The patterns that show up in the data can get pretty wild. For instance, here's what we'd get if used
a different pair of measurements from the images:

k

k = 11

Out[149]: <matplotlib.collections.PathCollection at 0x7f0ef6434470>

In [150]: plots.figure(figsize=(8,8))
plots.scatter(banknotes['WaveletSkew'], banknotes['Entropy'],
c=banknotes['Class'])

There does seem to be a pattern, but it's a pretty complex one. Nonetheless, the -nearest
neighbors classifier can still be used and will effectively "discover" patterns out of this. This
illustrates how powerful machine learning can be: it can effectively take advantage of even patterns
that we would not have anticipated, or that we would have thought to "program into" the computer.

k

Out[150]: <matplotlib.collections.PathCollection at 0x7f0ef639f1d0>

Multiple attributes
So far I've been assuming that we have exactly 2 attributes that we can use to help us make our
prediction. What if we have more than 2? For instance, what if we have 3 attributes?

Here's the cool part: you can use the same ideas for this case, too. All you have to do is make a 3-
dimensional scatterplot, instead of a 2-dimensional plot. You can still use the -nearest neighbors
classifier, but now computing distances in 3 dimensions instead of just 2. It just works. Very cool!

In fact, there's nothing special about 2 or 3. If you have 4 attributes, you can use the -nearest
neighbors classifier in 4 dimensions. 5 attributes? Work in 5-dimensional space. And no need to stop
there! This all works for arbitrarily many attributes; you just work in a very high dimensional space. It
gets wicked-impossible to visualize, but that's OK. The computer algorithm generalizes very nicely:
all you need is the ability to compute the distance, and that's not hard. Mind-blowing stuff!

For instance, let's see what happens if we try to predict whether a banknote is counterfeit or not
using 3 of the measurements, instead of just 2. Here's what you get:

k

k

In [151]: ax = plots.figure(figsize=(8,8)).add_subplot(111, projection='3
d')
ax.scatter(banknotes['WaveletSkew'], banknotes['WaveletVar'], ba
nknotes['WaveletCurt'], c=banknotes['Class'])

Out[151]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0x7f0ef63f9e80>

Awesome! With just 2 attributes, there was some overlap between the two clusters (which means
that the classifier was bound to make some mistakes for pointers in the overlap). But when we use
these 3 attributes, the two clusters have almost no overlap. In other words, a classifier that uses
these 3 attributes will be more accurate than one that only uses the 2 attributes.

This is a general phenomenom in classification. Each attribute can potentially give you new
information, so more attributes sometimes helps you build a better classifier. Of course, the cost is
that now we have to gather more information to measure the value of each attribute, but this cost
may be well worth it if it significantly improves the accuracy of our classifier.

To sum up: you now know how to use -nearest neighbor classification to predict the answer to a
yes/no question, based on the values of some attributes, assuming you have a training set with
examples where the correct prediction is known. The general roadmap is this:

1. identify some attributes that you think might help you predict the answer to the question;
2. gather a training set of examples where you know the values of the attributes as well as the

correct prediction;
3. to make predictions in the future, measure the value of the attributes and then use -

nearest neighbor classification to predict the answer to the question.

k

k

Breast cancer diagnosis
Now I want to do a more extended example based on diagnosing breast cancer. I was inspired by
Brittany Wenger, who won the Google national science fair three years ago as a 17-year old high
school student. Here's Brittany:

Brittany's science fair project was to build a classification algorithm to diagnose breast cancer. She
won grand prize for building an algorithm whose accuracy was almost 99%.

Let's see how well we can do, with the ideas we've learned in this course.

So, let me tell you a little bit about the data set. Basically, if a woman has a lump in her breast, the
doctors may want to take a biopsy to see if it is cancerous. There are several different procedures for
doing that. Brittany focused on fine needle aspiration (FNA), because it is less invasive than the
alternatives. The doctor gets a sample of the mass, puts it under a microscope, takes a picture, and
a trained lab tech analyzes the picture to determine whether it is cancer or not. We get a picture like
one of the following:

Unfortunately, distinguishing between benign vs malignant can be tricky. So, researchers have

In [152]: patients = Table.read_table('breast-cancer.csv')
patients = patients.drop('ID')
patients

So we have 9 different attributes. I don't know how to make a 9-dimensional scatterplot of all of
them, so I'm going to pick two and plot them:

Out[152]:
Clump
Thickness

Uniformity
of Cell
Size

Uniformity
of Cell
Shape

Marginal
Adhesion

Single
Epithelial
Cell Size

Bare
Nuclei

Bland
Chromatin

Normal
Nucleoli

5 1 1 1 2 1 3 1

5 4 4 5 7 10 3 2

3 1 1 1 2 2 3 1

6 8 8 1 3 4 3 7

4 1 1 3 2 1 3 1

8 10 10 8 7 10 9 7

1 1 1 1 2 10 3 1

2 1 2 1 2 1 3 1

2 1 1 1 2 1 1 1

4 2 1 1 2 1 2 1

... (673 rows omitted)

In [153]: plots.figure(figsize=(8,8))
plots.scatter(patients['Bland Chromatin'], patients['Single Epi
thelial Cell Size'], c=patients['Class'], s=30)
plots.xlabel('Bland Chromatin')
plots.ylabel('Single Epithelial Cell Size')

Oops. That plot is utterly misleading, because there are a bunch of points that have identical
values for both the x- and y-coordinates. To make it easier to see all the data points, I'm going to
add a little bit of random jitter to the x- and y-values. Here's how that looks:

Out[153]: <matplotlib.text.Text at 0x7f0ef62fc7f0>

In [154]: def randomize_column(a):
 return a + np.random.normal(0.0, 0.09, size=len(a))
plots.figure(figsize=(8,8))
plots.scatter(randomize_column(patients['Bland Chromatin']), ra
ndomize_column(patients['Single Epithelial Cell Size']), c=pati
ents['Class'], s=30)
plots.xlabel('Bland Chromatin (jittered)')
plots.ylabel('Single Epithelial Cell Size (jittered)')

For instance, you can see there are lots of samples with chromatin = 2 and epithelial cell size = 2;
all non-cancerous.

Keep in mind that the jittering is just for visualization purposes, to make it easier to get a feeling for
the data. When we want to work with the data, we'll use the original (unjittered) data.

Out[154]: <matplotlib.text.Text at 0x7f0ef62657b8>

In [155]: def distance(pt1, pt2):
 tot = 0
 for i in range(len(pt1)):
 tot = tot + (pt1[i] - pt2[i])**2
 return math.sqrt(tot)

Applying the k-nearest neighbor classifier to breast cancer
diagnosis
We've got a data set. Let's try out the -nearest neighbor classifier and see how it does. This is
going to be great.

We're going to need an implementation of the -nearest neighbor classifier. In practice you would
probably use an existing library, but it's simple enough that I'm going to imeplment it myself.

The first thing we need is a way to compute the distance between two points. How do we do this?
In 2-dimensional space, it's pretty easy. If we have a point at coordinates and another at

, the distance between them is

(Where did this come from? It comes from the Pythogorean theorem: we have a right triangle with
side lengths and , and we want to find the length of the diagonal.)

In 3-dimensional space, the formula is

In -dimensional space, things are a bit harder to visualize, but I think you can see how the formula
generalized: we sum up the squares of the differences between each individual coordinate, and
then take the square root of that. Let's implement a function to compute this distance function for
us:

k

k

(,)x0 y0
(,)x1 y1

D = .(− + (−x0 x1)2 y0 y1)2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

−x0 x1 −y0 y1

D = .− + (− + (−x0 x1)2 y0 y1)2 z0 z1)2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
k

Next, we're going to write some code to implement the classifier. The input is a patient p who we
want to diagnose. The classifier works by finding the nearest neighbors of p from the training set.
So, our approach will go like this:

1. Find the closest neighbors of p, i.e., the patients from the training set that are most
similar to p.

2. Look at the diagnoses of those neighbors, and take the majority vote to find the most-
common diagnosis. Use that as our predicted diagnosis for p.

So that will guide the structure of our Python code.

To implement the first step, we will compute the distance from each patient in the training set to p,
sort them by distance, and take the closest patients in the training set. The code will make a
copy of the table, compute the distance from each patient to p, add a new column to the table with
those distances, and then sort the table by distance and take the first rows. That leads to the
following Python code:

In [156]: def closest(training, p, k):
 ...

def majority(topkclasses):
 ...

def classify(training, p, k):
 kclosest = closest(training, p, k)
 kclosest.classes = kclosest.select('Class')
 return majority(kclosest)

k

k k

k

k

k

In [157]: def computetablewithdists(training, p):
 dists = np.zeros(training.num_rows)
 attributes = training.drop('Class').rows
 for i in range(training.num_rows):
 dists[i] = distance(attributes[i], p)
 withdists = training.copy()
 withdists.append_column('Distance', dists)
 return withdists

def closest(training, p, k):
 withdists = computetablewithdists(training, p)
 sortedbydist = withdists.sort('Distance')
 topk = sortedbydist.take(range(k))
 return topk

def majority(topkclasses):
 if topkclasses.where('Class', 1).num_rows > topkclasses.whe
re('Class', 0).num_rows:
 return 1
 else:
 return 0

def classify(training, p, k):
 closestk = closest(training, p, k)
 topkclasses = closestk.select('Class')
 return majority(topkclasses)

Let's see how this works, with our data set. We'll take patient 12 and imagine we're going to try to
diagnose them:

In [158]: patients.take(12)

We can pull out just their attributes (excluding the class), like this:

In [159]: patients.drop('Class').rows[12]

Out[158]:
Clump
Thickness

Uniformity
of Cell
Size

Uniformity
of Cell
Shape

Marginal
Adhesion

Single
Epithelial
Cell Size

Bare
Nuclei

Bland
Chromatin

Normal
Nucleoli

5 3 3 3 2 3 4 4

Out[159]: Row(Clump Thickness=5, Uniformity of Cell Size=3, Uniformity
of Cell Shape=3, Marginal Adhesion=3, Single Epithelial Cell
Size=2, Bare Nuclei=3, Bland Chromatin=4, Normal Nucleoli=4,
Mitoses=1)

Let's take . We can find the 5 nearest neighbors:

In [160]: closest(patients, patients.drop('Class').rows[12], 5)

3 out of the 5 nearest neighbors have class 1, so the majority is 1 (has cancer) -- and that is the
output of our classifier for this patient:

In [161]: classify(patients, patients.drop('Class').rows[12], 5)

Awesome! We now have a classification algorithm for diagnosing whether a patient has breast
cancer or not, based on the measurements from the lab. Are we done? Shall we give this to
doctors to use?

Hold on: we're not done yet. There's an obvious question to answer, before we start using this in
practice:

How accurate is this method, at diagnosing breast cancer?

And that raises a more fundamental issue. How can we measure the accuracy of a classification
algorithm?

k = 5

Out[160]:
Clump
Thickness

Uniformity
of Cell
Size

Uniformity
of Cell
Shape

Marginal
Adhesion

Single
Epithelial
Cell Size

Bare
Nuclei

Bland
Chromatin

Normal
Nucleoli

5 3 3 3 2 3 4 4

5 3 3 4 2 4 3 4

5 1 3 3 2 2 2 3

5 2 2 2 2 2 3 2

5 3 3 1 3 3 3 3

Out[161]: 1

Measuring accuracy of a classifier
We've got a classifier, and we'd like to determine how accurate it will be. How can we measure
that?

Try it out. One natural idea is to just try it on patients for a year, keep records on it, and see how
accurate it is. However, this has some disadvantages: (a) we're trying something on patients
without knowing how accurate it is, which might be unethical; (b) we have to wait a year to find out
whether our classifier is any good. If it's not good enough and we get an idea for an improvement,
we'll have to wait another year to find out whether our improvement was better.

Get some more data. We could try to get some more data from other patients whose diagnosis is
known, and measure how accurate our classifier's predictions are on those additional patients. We
can compare what the classifier outputs against what we know to be true.

Use the data we already have. Another natural idea is to re-use the data we already have: we
have a training set that we used to train our classifier, so we could just run our classifier on every
patient in the data set and compare what it outputs to what we know to be true. This is sometimes
known as testing the classifier on your training set.

How should we choose among these options? Are they all equally good?

It turns out that the third option, testing the classifier on our training set, is fundamentally flawed. It
might sound attractive, but it gives misleading results: it will over-estimate the accuracy of the
classifier (it will make us think the classifier is more accurate than it really is). Intuitively, the
problem is that what we really want to know is how well the classifier has done at "generalizing"
beyond the specific examples in the training set; but if we test it on patients from the training set,
then we haven't learned anything about how well it would generalize to other patients.

This is subtle, so it might be helpful to try an example. Let's try a thought experiment. Let's focus
on the 1-nearest neighbor classifier (). Suppose you trained the 1-nearest neighbor classifier
on data from all 683 patients in the data set, and then you tested it on those same 683 patients.
How many would it get right? Think it through and see if you can work out what will happen. That's
right! The classifier will get the right answer for all 683 patients. Suppose we apply the classifier to
a patient from the training set, say Alice. The classifier will look for the nearest neighbor (the most
similar patient from the training set), and the nearest neighbor will turn out to be Alice herself (the
distance from any point to itself is zero). Thus, the classifier will produce the right diagnosis for
Alice. The same reasoning applies to every other patient in the training set.

So, if we test the 1-nearest neighbor classifier on the training set, the accuracy will always be
100%: absolutely perfect. This is true no matter whether there are actually any patterns in the data.
But the 100% is a total lie. When you apply the classifier to other patients who were not in the
training set, the accuracy could be far worse.

k = 1

In [162]: patients = patients.sample(683) # Randomly permute the rows
trainset = patients.take(range(342))
testset = patients.take(range(342, 683))

We'll train the classifier using the 342 patients in the training set, and evaluate how well it performs
on the test set. To make our lives easier, we'll write a function to evaluate a classifier on every
patient in the test set:

In other words, testing on the training tells you nothing about how accurate the 1-nearest neighbor
classifier will be. This illustrates why testing on the training set is so flawed. This flaw is pretty
blatant when you use the 1-nearest neighbor classifier, but don't think that with some other
classifier you'd be immune to this problem -- the problem is fundamental and applies no matter
what classifier you use. Testing on the training set gives you a biased estimate of the classifier's
accurate. For these reasons, you should never test on the training set.

So what should you do, instead? Is there a more principled approach?

It turns out there is. The approach comes down to: get more data. More specifically, the right
solution is to use one data set for training, and a different data set for testing, with no overlap
between the two data sets. We call these a training set and a test set.

Where do we get these two data sets from? Typically, we'll start out with some data, e.g., the data
set on 683 patients, and before we do anything else with it, we'll split it up into a training set and a
test set. We might put 50% of the data into the training set and the other 50% into the test set.
Basically, we are setting aside some data for later use, so we can use it to measure the accuracy
of our classifier. Sometimes people will call the data that you set aside for testing a hold-out set,
and they'll call this strategy for estimating accuracy the hold-out method.

Note that this approach requires great discipline. Before you start applying machine learning
methods, you have to take some of your data and set it aside for testing. You must avoid using the
test set for developing your classifier: you shouldn't use it to help train your classifier or tweak its
settings or for brainstorming ways to improve your classifier. Instead, you should use it only once,
at the very end, after you've finalized your classifier, when you want an unbiased estimate of its
accuracy.

The effectiveness of our classifier, for breast cancer
OK, so let's apply the hold-out method to evaluate the effectiveness of the -nearest neighbor
classifier for breast cancer diagnosis. The data set has 683 patients, so we'll randomly permute the

k

In [163]: def evaluate_accuracy(training, test, k):
 testattrs = test.drop('Class')
 numcorrect = 0
 for i in range(test.num_rows):
 # Run the classifier on the ith patient in the test set
 c = classify(training, testattrs.rows[i], k)
 # Was the classifier's prediction correct?
 if c == test['Class'][i]:
 numcorrect = numcorrect + 1
 return numcorrect / test.num_rows

Now for the grand reveal -- let's see how we did. We'll arbitrarily use .

In [164]: evaluate_accuracy(trainset, testset, 5)

About 96% accuracy. Not bad! Pretty darn good for such a simple technique.

As a footnote, you might have noticed that Brittany Wenger did even better. What techniques did
she use? One key innovation is that she incorporated a confidence score into her results: her
algorithm had a way to determine when it was not able to make a confident prediction, and for
those patients, it didn't even try to predict their diagnosis. Her algorithm was 99% accurate on the
patients where it made a prediction -- so that extension seemed to help quite a bit.

k = 5

Out[164]: 0.9706744868035191

Important takeaways
Here are a few lessons we want you to learn from this.

First, machine learning is powerful. If you had to try to write code to make a diagnosis without
knowing about machine learning, you might spend a lot of time by trial-and-error trying to come up
with some complicated set of rules that seem to work, and the result might not be very accurate.
The -nearest neighbors algorithm automates the entire task for you. And machine learning often
lets them make predictions far more accurately than anything you'd come up with by trial-and-
error.

Second, you can do it. Yes, you. You can use machine learning in your own work to make
predictions based on data. You now know enough to start applying these ideas to new data sets
and help others make useful predictions. The techniques are very powerful, but you don't have to
have a Ph.D. in statistics to use them.

Third, be careful about how to evaluate accuracy. Use a hold-out set.

There's lots more one can say about machine learning: how to choose attributes, how to choose
or other parameters, what other classification methods are available, how to solve more complex
prediction tasks, and lots more. In this course, we've barely even scratched the surface. If you
enjoyed this material, you might enjoy continuing your studies in statistics and computer science;
courses like Stats 132 and 154 and CS 188 and 189 go into a lot more depth.

k

k

